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P. Dubey! and J. D. Rogawski

1. Introduction

The main theme of this paper and its sequel ([5]}) is that Nash

-
~-

equilibria (N.E.) are generally inefficient (in the Pareto sense). Supl

pose that a game with n players is given by n maps

Qi : S *X ... X% Sn g Y1

1

) and n maps

ui:Yi*R,

the outcome space, and u:l the utility

i
player. Thus the ith player gets the payoff

where Si is the strategy set, Y

function of the 1th

\ ui(oi(?)) , wvhere s = (01, cees ln) and 'j € S, denotes the strategy

3

chosen by the jth player. The S, and Yi are taken to be "S-manifolds"

i
(as defined in Section 2), for instance simplices or manifolds,? and the
maps 01 and u1 are c2 . The general question is: "to what extent

; are the Nash equilibris of these games Pareto efficient or inefficient?"

The focus of the present paper is the case where all the Yi

1 The firet-nsmed author's work wes supported by O,N.R, Grant WOO014-77-C-0518
4ssued under Contract authority MR 047-006,

2Throughout this paper, all manifolds sre assumed to be ¢ -manifolds.




coincide with a fixed Y and the 01 with a fixed ¢ ; this may be .
thought of as corresponding to "pure public outcomes.” We begin its

anslysis in Section 2, assuming that Y = sl X ... %S

a and that ¢ 1is

the identity map. Our msin result (Theorem 2.4) states that if the space
of utilicies satisfies a certain condition "T.C." given in Section 2, then
generically (for an open dense set of utilities): (a) the set of N.E.

is finite and varies continuously, (b) 4f an N.E. 1is efficient, then at
least one player is on a "vertex" of his strategy set, (c) if an N.E. is

strong, then at most one player is not on a vertex of his strategy set.

k¥

Note that (b) impliies generic inefficiency of N.E. if the strategy sets

N are vertex-free (e;g. manifolds) or if vertices can s priori be ruled out

of N.E. in the given case. The result applies to the multi-matrix games of Nash.
(Section 3). Here a vertex corresponds to a pure-strategy and, given the

special structure of payoff functions, (c) can be strengthensd to: 1if

an N.E. is strong, every player is using a pure strategy. These results

were obtained vhen § 3 is a simplex in [2] and the present treatment is ‘
based on the sane ideas in a more general framework. It is also shown that the ..

set of efficient ltntegliu is contained in a unfon of submanifolds of Y

S

of codimension at least 1 + (N - n) where N is the dimension of Y.
In Section 4, we present a simple example of the resv ™*3 of Section

2. It illustrates all of the general phenomena and the .aa ~2» wishes
to understand Theorem 2.4 without resding the proof 1is ercouraged to read
the definitions of Section 2 and them turn directly to Section 4.

In the final section, we discuss vhat happens for arbitrary ¢ .
When the strategy sets and the outcoms Space open submanifolds of Euclidean
space, it turns out that a certain inequality relating the number of players,
the dimension of the strategy sets, and the dimension of the outcome space
guarantees that the conclusions of Theorem 2.4 hold for generic ¢ .
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In Part II ((5]) we consider the "pure private outcomes” case, in
vhich the ¢, are distinct and 71 X oo xY 1 the get of all reallo-
cations of privately-owned commodities. The ¢, are subject to certain
constraints in the spirit of [4] (which also includes a survey of recent
articles on such "strategic market games"). The precise statement of in-
efficiency will be made in its place. Here again there is a precursor
(1{3])), in which a pariicular example is worked out. But our approach is
significantly different from that of [3). We show that for fixed 01 .
the set of strategies s1 X .. X sn can be partitioned into E and 1 .
Every point in E has the property that, for any choice of utilities, if
it is an N.E. then it is perforce efficient. I 4s characterized by exactly
the same property with "efficient" replaced by "inefficient.”" Therefore
we call them "ultra-optimal" and "ultra-inoptimal" points. The analysis
turns on the sets E, I and on showing that the set of N.E. of the
game u = (ul. seny ") generically has a transversal intersection with

E L]

2. The Main Theorem

The strategy sets which occur for many classes of games are not
manifolds. A standard example is the simplex in R" . To take this into
account, we define and prove our theorems for a class of topological spaces
vhich we call S-manifolds. It seems that most strategy sets are S-manifolds.
Since the proofs for S-manifolds will be reduced to the case of manifolds,
v; first define our set-up for manifolds and introduce S-manifolds toward

the end.

1
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dimension r(j) . Let Kk(y) = Zrm (Later §; vill be taken to

be an. S-manifold. ) Let X 31 X 4.0 X s it 1s a manifold of dinen-

sion N=k(n) , Let ¢ (x) be the Banach space of functions u on

X 8ll of whose partial derivatives of order 0, 1

and 2 exist and are con~

tinuous and whose norm I, given by

lluf|? sup [Du(x) |
x€X
D

where Du ranges over all partial derivatives of u of order <2, is

finite.

Let U be a Banach submanifold of cz(x) « Thus U is a class

of utility functions and 8 game consists of an
that is,

element y = (u 9 coeg Ul )€U
a choice of utility function for sach player,
tegies s = (s

A choice of gtra-

1° co-s8) €X 15 410 an outcome and the j player's
Payoff is given by uj(s)

Equilibris: Assume = (ul, ..., " € 7 4, fixed.
empty subset of {1, 2

let T bde a non-

s ey} and for e € 1S , let (s|¢) denote
1€T

the element of x obtained by replacing 31 by ei for 1 €T1.

1) Apoint T €x 14 called T-efficient 1f there

@€ 1 Si such that:
1€T

is no point

Halo 2@ foran 3 €T
vae W@ for some JET

. (the coalition of players belonging to T cannot Pareto-improve itself

1f the other players remain fixed),

e g *
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2) Apoint s € X 4s s Nash equilibrium if it is T-efficient for

all gubgets T consisting of one element.

3) Apoint s € X 1s efficient (or Pareto optimal) if it is T-

efficient for T = {1, 2, ...,n} .

4) Apoint 8 € X is a strong Nash equilibrium if it is T-efficient

for all subsets Tc {1, ...,n} .

5) Let N(u) , E(u) , S(u) denote the sets of Nash, efficient,

and strong Nash points in X respectively (with respect to the utilities

7=l ... 0™ ).

The Derivative Map: We are going to define a map which will be used in

the investigation of Nash and efficient points of a game. Lemms 2.2 gives

the precise connection.

With notation as before, let T* denote the cotangent bundle of

X and T*(x) the fiber of T* above x € X . Thus T*(x) is the co-

tangent space at x (the dual of the tangent gpace) and if we choose local

coordinates (xl, ooy "N) around x , then T*(x) can be identiffo’

with R' . Each function u € cz(x) defines a section Vu of T* ;
Vu 1is the gradient of u and in local coordinates (xl. ...,xN) near a

point x €X, Vu= (aulaxl, eney 3u/3x“) .

th

Let 'r; be the n = power of T* ; 4in other words, '1'; is the

vector bundle over X whose fiber at x € X is T*(x) x ... x T*(x)
n—ﬁ.u
and in local coordinates we may view an elesent of this fiber as a matrix

wvith n rous gsnd RN columns.
- 1l n *
Given u = (u', ...,u?) € U" , we obtain a section D(u) of L

vhose value at x € X we denote by D(u,x) . 1In local coordinates

(’1"""15) near x ,

i

T
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D(u,x) = : P | € ‘l‘;(x) .
N
\_3:1 ‘ﬂ-

The map D(u,x) from UT € X to T: 1s called the derivative map.

We will always choose local coordinates (xl. ceey x“) vhich are
compatible with the product structure X = s1 X ,.. % sn ;: that is, we
always choose (x,, ...,xN) 80 that (xl. ""’k(l)) are local coordinates

for s1 . (xk(1)+1' ""'k(Z)) are local coordinates for S, » etc.

Let S:" be a submanifold of sj for §=1, ..., n and put
n
X' = 8] X ... %83 let d()) =din(S)) , a= ]d()) , andler T'*
. j=1

(resp. T;* ) be the cotangent bundle of X' (resp. product of T'* with
itself n times). Every cotangent vector v € T*(x) defines, by restric-
tion, a cotangent vector in T'*(x) , for x € X' . To see this, note
that the tangent space T'(x) to x in X' 4is a subspace of the tangent
space T(x) to x 4in X and hence elements of the dual space of T(x)
(namely, cotangent vectors) restrict to give elements of the dual space
of T'(x) . We shall assume that d(j) >0 for all j .

We define two subsets E" and N" of T;* as follows, Let
("1' ....x.) be local coordinates for X' gsround a point x € X' , chosen
s0 that (’1' ----‘hii)’ are local coordinates for si .
(xa(1)+1. ....x‘(1)4‘(2)) sre locsl coordinates for si » @tc. With
respect to these coordinates, an element of T;'(x) is represented as

a matrix with n rovs and & columns. Define:

E" = {(x,V) € T;' t V bas linearly dependent rows} .

1 o
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(Here (x,V) € 'r;‘* means that V 4s an element of the fiber 'l‘l"* Tepre-

sented_as a matrix in local coordinates.) Define:

1-1 i
N = {(x,V) € T'* : Vg =0 for 1+ Jdp) <3< ]a)
1=]1 =1

where vij denotes the (i,j)~entry of V . 1In other words, (x,V) € N"

if y has the form:

— = J

a)  a(2) d(n)

Define E' (resp. N' ) to.be the set of elements (x,V) € 'r; such .that:
1) x€ X'
2) the restriction of V to ‘rl"*(x) lies in E" (resp. N" ).
1t is obvious that N" is a closed subset of 'r;* (wvhich is itself a
manifold). It is also obvious that E" is closed in T"‘* and this
can be checked as follows. Because Tt"* is a locally trivial
bundle, it will suffice to show that if {A.) is a sequence of nxa

matrices with linearly dependent rows such that 1lim % = A, then A
e

has linearly dependent rows. If % has linear'ly dependent rows, there
is a non-2ero vector \ € R" such that v-An = 0 and, multiplying Va
by & scalar if necessary, we may assume that ||v_|| = 2 . Since the unic
sphere in R" is compact, there is a subsequence of the A vhich converges
to a vector v €R" such that ||v|| = 1 and it is clear that vA =0 .

Hence A has dependent rows.

1)




In the next lemma, we somevhat pedantically prove some statements
that vill be needed to apply the transversal density theorem and ask the

rudcr. for whom these statements are obvious to bear with us.

Lemma 2.1: (1) N' is a submanifold of T5 of codimension N .

(11) E' 1s a finite union of submanifolds of ‘l‘: of codimension greater
than or equal to N-n+l .

(111) E' N N' 4s a finite union of submanifolds of ‘l': of codimension

greater than or equal to N+1+(a-n) .

Proof: Because T; 1s a locally trivial bundle, every point x € X has
an open neighborhood V € X and local coordinates (xl, eses xN) onvy
such that the restriction of ‘I‘; toV 1is igomorphic to V¥V x Mat(m,N)
wvhere Mat(n,N) denotes the set of matrices with n rows, N columns,
and real entries. Furthermore, we may choose the coordinates (xl. cons xN)
so that (xk(i-l)ﬂ' ""xk(i-l)-fd(i)) are local coordinates for Si .
It is clear that: 1) to prove that N' , E', and E' N N' are unions
of submanifolds, it suffices to show that N'" , E", and K" N E" are;
and 2) dim(N') = dimn(N") + (N-a)n , dim(E') = dim(E") + (N-a)n , and
dim(N' N E') = dim(N" N E") + (N-a)n where dim(E') and dim(E' N N')
denotes the maximum dimension of the submanifolds whose union is E' ,
E' N N' , etc. Therefore we may as well assume that X = X' and that
a =N . Then (1) is obvious.

To prove (i11), it will suffice, in view of the local triviality of
'r; s to show that the set A of n x N matrices with linearly dependent
rovs is a finite union of submanifolds of dimension < (n-1)(N+l) . Let
T be a proper subset of (1, 2, ...,n} and let o, be the subset of

Mat(n,N) of matrices A such that if A, denotes the jﬂ‘ row of A,

J
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then the vectors (Aj : § €T} are linearly independent and each A
for 1. € T 1s dependent on the set {Aj :t J €T} . Ve show that A, 1s

a submanifold of Mat(n,N) and compute its dimension. Since A = UAT .
T

this will show that 4 4s a finite union of submanifolds.
We may assume that T = {1, ..., t} without loss of generality.
Let S, be the set of elements in Mat(t,N) with linearly dependent rows.

We have shown that St is a proper closed subset and hence the set

(Mat(t,N) -St) x Mat(n-t, t)

is a manifold of dimension tN + (n-t)t . We construct an embedding ¢

from (Mat(t,N)-St) x Mat(n~t, t) onto AT as follows: for

B € (Mat(t,K)-St) with rows B;, ..., B, and Cs= (cij) € Mat(n-t, t) ,
h

let ©(B,C) be the matrix whose 1" row is By for 1 <ic<t and

. t
whose 1P row is Z C,:B
4e1 3373

a manifold of dimension tN + (n-t)t and it is easy to see that the largest

for t <1 <n . This shows that 4, 1is

of these dimensions (1 < t < n-1) 1s the case t = n-1 , i.e., the largest
dimension 1s (N+1)(n-1), and it follows that E' {s a finite union of
submanifolds of dimension less thian or equal to N + (N+41l)(n-1) .

It remains to prove (iii). Again by the local triviality of T;
and the above remarks, it is enough to show that the set O of n xR

matrices of the form

- L

r

. -9

\ [ N—— - -

r(l) 172) :E)

! . - - ¢ T ey it
. R o O T T
e S T Cl B RN
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wvith linearly independent rows is a finite union of svbmanifolds of dimen-
sion < N(n-1) - (N-n+1) . Let T be a proper subset of {1, ...,n} and
let Q‘l‘ be the subset of Q of matrices A with rows Aj such that

{Aj : J €ET) is a linearly independent set of matrices. We show that

n.r is a submanifold of Mat(n,N) and compute its dimension; we may assume
that T = {1, ..., t} with t <n . Let n.i. be the set of t-tuples of
row vectors of length N (Al, ceey At) such that the Aj are linearly
independent and Aj forms the jth row of cone. matrix in o, 1i.e.,

Aj has zeroes in the sppropriate places. As before, 0.} is a manifold.

Consider the map:
v ﬂ.i. x Mat(n~t, t) -vllr(“'l) X ... xnr(“)

defined as follows. Let (Al. ....At) x (cij) € n.i. x Mat(n-t, t) and

t
consider the row vectors ) CiqAy for 1 =1, ..., n-t . let v
ge1 1373

the vector consisting of the k(t+i-1) +1 to k(t+i) entries of the

1!>e

.t t
vector jzlcijAj; 1f v, 1s zero, then the vector jzlcijAj qualifies

as the (1-0-:)th row of a matrix in & . Define w((Al. ....At) x(C,.))

1J
- (vl, Vs cees Ve
to Oy : send (A, ...,A) x “’1_1) € 0"1((0. eess 0)) to the matrix

vhose first t rows are Al. ceey At and vhose :lth row for t <i <n

t
~1
is 3§1c““’1A3 . 1If wve show that ¥ ((0, ...,0)) is a manifold, it

will follow that ﬂ.r is, and to do this, we need only check that ¢ is
transverse to (0, ...,0) . Ve omit the straightforward verification.

It also follows that n.l. is a manifold and since

the codinension of t-l(.O. 200 0) 1n n.i. x Mat(n-t, t) 4s the ssme as that

) . On the other hand, we have a map from w‘l((O, veey 0))
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of (0, ...,0) in RECEHD) . L gk(®)

]
dim “r = (t=1)N + (n-t)t = -tz 4+ (Nn)t - N,

Here 1 <t <n-l1 and the maximum value of this dimension occurs for

t = n-1 and we get (n-2)N + (n-1) = N(n-1) - (N-n+l) . This proves (iii).
The transversal density theorem will be applied to the map

0’

D: U xX-»T*
n

(u,x) ¥ D(u,x) .

We recall the definition of transversality. Llet ¢ : X - Y be & differ-
entiable map between two manifolds X and Y and let WCY be a sub-

manifold. Let Txx (resp. TxY . wa ) be the tangent space to x

in X (resp. Y, W) for x €X (resp. Y, W) . Then ¢ is said
to be transverse to W at a point x € X if either ¢(x) € W or

¢(x) €W and T yY = To(x)“ + d¢(T,Y) . This is written as ¢¢xw .

o(x
1f ¢ is transverse to W for all x € X, we say that ¢ is trans-
verse to W and write ¢M™W . If ¢étW , then o-l(W) is a submanifold

of X ([ 10).

Lemma 2.2: let X' = Si X se0 X s; as before. Suppose that the jth
player is constrained to pick his strategy from s; and let

U= (ul,...,u") €U" be achoice of utilities. In other words, utilities
come from U but the strategy sets are reduced to SS . Then

(1) If x € X' 4is a Nash equilidbrium for this game, then D(u,x) € N' .
(11) If x € X' 41s an efficient point for this game, then D(u,x) € E'
(this condition was used by Smale [6]).

(444) If x €X' and x € N(U) , the x is a Nash equilibrium for this

restricted game,




¢
e e m———— A =
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Proof: (1) If x € X' 41s a Nash equilibrium, 1t follows that for all
i, gl_ne point x is a local maximum for u1 with respect to the Si-
variables, hence the corresponding partial derivatives sust vanish.

(11) If the projection of the rows of D(u,x) onto Tt'l*(x) are
linearly independent, then there is a vector v € R® such that D'(u,x)v
has pcsitive entries, where D'(u,x) denotes the projection of D(u,x)
onto ‘l‘"‘*(x) . Then v defines a direction in X' along
which each ui is increasing. . Hence x 1s not an
efficient point for this game. (1i1) is clear.

We will say that the space UcC cz(x) satisfies condition T.C.

(transversality condition) if for all u € U, x€ X, and v € T*(x) ,
there exists a path £(t) in U such that £(0) = u and

-&%(D(E(t), x)) v . Thus condition T.C. implies that the map

t=0 "

D:U" x X T*
n

is transverse to all submanifolds of T; . It also implies that the map
D' : U" x X' » 'r"‘* for X' as before is transverse to all submanifolds
of 'l';‘* .

Now we define S-manifolds. Let M be an n-dimensional manifold.
If X 1is » subset of M, the interior X° of X 4s the set of points
x € X such that there exists an open neighborhood of x in M contained
in X . A subset X of M is called an S-manifold if

(1) X° =« X (where X° = the closure of X° in M)

(1) X-1° teaunton UX where X' 1o & submanifold of M

and fj is a lubuni'flild with boundary.

The x’ (=0,1,...,8) arecalled components of X .
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If X 1s a closed subset of & manifold M, we defime C2(X) to
be the set of restrictions to X of czotunctiom f with bounded norm
on some open neighborhood of X 4in M and identify two functions on an

open neighborhood of X 4f they sgree on X . Set

||f||2 = gup |Df(x) |
x€X

D

where Df ranges over all partial derivatives of f of order < 2 .

11

Using the Whitney extension theorem ([ 1]) and an argument involving par-
titions of unity, we can choose one open neighborhood & of X in M
such that every f € cz(x) is the restriction to X of an element of
Cz(k) . let U be a submanifold of 02(&) with the norm || "2 defined
above and let || IIS be the usual Cz-nom on Cz(*) . It is clear that
IIfH2 < ||f||<2) for a1l £ € c2(X) and so a dense subset of C>(¥) in
the norm || II(Z) is, a fortiori, dense under the norm || ||2 .

Now assume that the strategy sets S y are S-manifolds (defined
as subsets of a manifold M, of dimension r(j) ) with open neighborhoods

3

gj c M_1 as in the previous paragraph. Let X = §) X ... x 8

X = 31* Ty ¢ gn ’ Cz(&) the space of Cz-functions under the norm

o * and let

i
||-||2 » as in the previous paragraph. Let SJJ be a component of S,

i i 4
and set X = sll X o00 X sn“ wvhere a = (11, """n) : let A be the
1 \ \ !
3 ) >0 for all j . Let Na and E° !

be the subsets of a’; associated to xa » vhere i'; is the nth-pmr

set of such d for which dim(S

of the cotangent bundle of * (these sets are defined as in Lemma 1 and

the parsgraph preceding it).

» S 9

P P VS
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Theorem 2.3: Assume that U satisfies T.C. with respect to the map
B:u"x¥- a'; + Then there 1is a dense set Uo ct® (with respect to
the norn || |2 ) such that for all T € Ug ¢
(1) D)(X) N (E;NN) = ¢ for all a €A
(i1) 1f X is compact, then a Uo satisfying (1) may be chosen
open and dense and such that for all u € Up : D(W)(X) N N

is finite for all a gngd codim(D( T )'1(3‘:) = 14+N-=-n.
Here D(u)(X) denotes the image of X under the map D(u) = D(u,x) .

Proof: We apply the transversal density theorem to the derivative map
B:u" =¥ 3‘: . Since U satisfies T.C., this theorem implies that
there is a dense set Uo c U™ such that for all ue= (ul. ....un) € " .

the map

D(E):x-»i';

i3 transverse to N; for a € A and each of the finite number of submani-
folds whose union is N; n E; . From Lemma 2.1 we have

(2) din(x) = codin(N)) for a € A

(b) dim(X) < codin(u":ns"‘) for a €A
.vhen codin(“;n!;) denotes the smallest of the codimensions of the sub-
manifolds whose union is N; n E; . Part (1) follows immediately from (b)
and (a) implies that the Nash set N(u) , which is contained in

D(;)-l( UAN;) , is a zero-dimensional submanifold of X . In particular,
a€

1f X 1s compact, D(Tn')"l( UA“"‘) is a finite set.
o€ 1
Suppose that X 4s compact. Since each 'S'jj is a manifold with

i
boundary, we can, by considering the boundary components of ljj saparately,

choose U, so that D(W(X) N (‘i;ni;) =¢ forall a€A and u € Yo -

14




e e

15

Here i; and E:: denote the closures of N! and E! . Furthermore,

the implicit function theorem and the transversality property of D(u)

for uec U, show that for u' sufficiently close to u , the set
D(u' )"1( UN!) 1s also finite and varies continuously for u' near u .
a€A

This also shows that for u' clese to u, D({')(X) N (ﬁ;n'z';) - ¢ for
hence we may assume U_ open.

all a €A A Furthermore, EJ 1s closed in 'I;‘ for all «a€A  and so, by

considering the restriction of D( w ) to the X, , the transversal density

theorem shows that there is an open set ulc Un such that D( 0 ) 1s transverse

to E; for all 4« ¢ A. Replacing v, by Uof\ IJ1 proves (ii).

We reformulate Theorem 2.3 in game-theoretic language. Let S, be

3
the strategy set of the jth player; since it is an S-manifold,
]
0 J 1 '

S, =S, U(US,) where the S, are manifolds. A point x € §, will

I IR 3 i

be called a vertex if it is a zero-dimensional component of § 3 under a
minimal such decomposition of § 1.e., if x = Si for some {1 and m

h h)
is minimal in the above decomposition.

Theorem 2.4: Assume that U satisfies T.C. and that X 4s compact.

Then there is an open dense set Uy €U such that for all u € Up ¢
1) N(w) 1s a finite set which varies continuously for u € Uy -
2) If x=(8),....8) €EX and x € N(u) N E(W) , then some

Sj is a vertex. In particular, if the $:l

have no vertices,
N(u) N E(u) = ¢ .

3) If x€5S(u) NEQU), then at most one S, 1s not a vertex.

4) E(u) 1s a finite union of "submanifolds" of X of codimension
at least 1 4+ (N-n) . (Here “submanifold" of X wmeans the

intersection of X with a submanifold of X )

3

¥



-

16

Proof: This is gggentially - a restatement of Theorem 3 together with

some t.ourko made in the proof. Let Mc (1, ..., n} be a subset and look
at the finite number of “"subgames" among the players in M obtained by
placing all other players on one of their vertices. If card(M)Y 1 our
argusent shows that there is an open dense set Uy such that if u € Uy
and x is » Nash Equilibrius of the subgame u , then it is not M-efficient
unless one of the players in M 1is also at a vertex. Take Uo to be
the intersection of all such Uy -

Finally, we remark that conditfon T.C. is satisfied if U = C2(X)
or if U 4is any linear subspace of cz(x) such that for all x€ X,
there exist N functions in U which provide local coordinates near x .
For example, 1f X gll“ » then a linear subspsce U satisfies T.C. 1if
it contains the linear functions on R" . Furthermore, there are many
wvell-known theorems which guarantee the existence of Nash equilibria for

various open classes of functions, e.g. functions satisfying convexity

conditions, etc.

3. Multi-matrix Games

These were introduced by Nagh in [5). Each player 1 has a finite

set Ki of "pure strategies” which we number for convenience as follows:

K, = {1, ..., k)]

Ki = {k(1-1) +1, ..., k(1)}

‘n - (k(n‘1)+1' esey k(ﬂ)} .

Each K is now enlarged to a set xi of "mixed strategies," wvhich are

KN
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simply probability distributions on K‘ :

xi
X, »{x€R " : ] x, =1, x, 20} .

b h)
3€K,

K
By R i we mean the Euclidean space of dimension “"‘("1) vhose axes are

indexed by the elements of l(1 . We identify Ki with the set of vertices
K

1
of Xy by associating j € Ki with the point (0, ...,0,1,0,...,0) €ER " .
b
let K= Kl X .. X Kn . A multi-matrix game is specified by payoffs: ,

1)

al ERK. ceey a“ERK . For any k € K, ai is the payoff to 4 4f the

n-tuple of pure strategies given by k are used. Given al. ooy a”

we now define the payoffs I 1° e n n OO X= xl X ... X Xn as the
a

a
K

expectation of the pure strategy payoffs. Let zi - {‘x €R i : %— < Z xj 1‘

. . 3€l(:l

< 1%-, lle <2 4.e., 2, 1is an open set in R 1

which contains the

simplex xi. Put z-zlx...xzn. For aikx. define n.zz-»x by

N1 (x) = a
a kékxk k

i s 2 b RS a7

vhere x  denotes xj(l) METTILIE PSRN for k= (§(1), ..., J(n)) . Then

§(n

if ai € RK is the payoff of 1 in the pure-strategy game, I 1 restricted
)

to X gives his payoff in its "mixed extension."
To apply Theorem 1 to this context it will suffice to check that
De{n, :a€R) satisfies the T.C. condition for any 2 €Z . Put i

LeKV ...an-{l.....k(n)} . Porany JEL, 1let
K'j-xlx...xK‘_lxliﬂx...uln vhere i is such that J €K, .
(Since L 41s a disjoint union, this is well-defined.) Also for any

q= (2(1), coop 2(d~1), £(441), ..., R(n)) 4n K" , denote the element
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(1), ..., l.(i-l).j,l.(tﬂ). esss 2(n)) of K by (q,J) . With this nota-

pl/
tion, ve see that s';; (@) = ‘.25 “.‘.‘ ‘,‘, J) Vhere "g' B Baew ien e
for % (80),..., L(i-1), l(&n),...,t(.)), Take any VQRL.Por cach
Je b oht) therets 4 gPEKD L e By n? 0 because

i .g‘ w0 for ;s ly....on ., Now consider the path 'lT.eI’ vhere:
deKt oo

s + (tvj/zq(j)) if k= (q(3), I

a othervise

Then Tat((Dﬂ ¢)(2)) = v . This shows that U satisfies T.C. at any
a

z€2.

n
By Theorem 1 there is an open dense set Vl of a!K) such that

1f (al, ...,aM =a€ V, then (a) the N.E. of N = (I,,...,0 ) are
a a

finite in number, (b) if an N.E. of ll. is efficient, there is at least
one player who uses a pure strategy, (c) if an N.E. of ll. is strong, then
at most one player's strategy is possibly not pure. To sharpen (c), let

W2 be the subset of U® given by

vzo((.l......")eu":.:f.:: if either R # 2' or k¢ k'} . .

V, 1is open and dense in U . Moreover if x = (xl. ....xn) €X is
an N.E. of I, for a € vy, and 4f all but one of the players use pure
strategies at this N.E,, then clearly so does the remaining player. Let

v-vlnvz. We have proved

Theorem 3.1: There 1is an open dense set V of U” guch that, if s €V,

(s) the N.E. of N are finite in number,

(b) 1f an N.E. of NI, 1s efficient, then at least one player uses & pure L

strategy,

(c) 1f an N.B. of R, 1s strong, then esch player uses a pure strategy.

- TR SR T T N W L TR
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4. An Example
We present the following example because it is particularly simple

and illustrates with saximum clarity sll of the features of the general
case.

Consider a game with two players where the strategy set of each
player is the interval [0,1] . The payoff functions are then functions
on the square [0,1] x [0,1]) , which we call X ; & point in X {s de-

noted by (xl, xz) wvhere x, 1is the jth player's strategy choice.

b
For each point P = (a,b) € Rz s let up be the function :

uplx,y) = (x-8)? + (3-b)2

i.e., uP(x,y) is the square of the distance from (x,y) to P . Let

: PE R?} of all such functions. Then U 41is a sub-
2

U be the set {up

manifold of szz) and is isomorphic as a manifold to R“ itsgelf.
We want to examine the Nash and efficient sets of the games where
" each player's payoff function is selected from U . A game of this type
is determined by assigning a point P = (a,b) to player 1 and a point
Q= (c,d) to player 2, so that their payoff functions are respectively
up and uq - We denote this game to be (P,Q) .

To find the Nash equilibria of the game (P,Q) , note that player
1's best response to any strategy choice of player 2 is the point in
[0,1] closest to a ; thus his best response is a if s € [0,1]) ,
Ois a<0, andl if a> 1 . Similarly player 2's best response to

any strategy choice of player 1 is the point in [0,1] closast to 4 .
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Q= (c,d)
0,1) l. (8,1) In the figure on the left, the point
R 1s the Nash equilibrium of the
'?'(l.% game (P,Q) . In particulsr, we
see that every game (P,Q) has a
(0,0) (1,0) unique Nash equilibrium.

To describe the efficient set of the game (P,Q) , denoted
by E(P.Q) , we need s definition. Given any closed convex set C _C_RZ
and a point ME€ Rz » there is a unique closest point to M in C .

We denote this point by rc(M) and call it the retraction of M into C .
Thus

distance(M, r.(M)) = min(distance(M,P))
¢ PEC

and Te defines a continuous map of Rz onto C such that rc(P) = P

if PE€EC.

lemma 4.1: For all P, Q€ Rz » E(P,Q) 1s equal to the retraction
ipto X of the line segmwent joining P and Q . In other words, if

L(P,Q) is the line segment joining P and Q, then E(P,Q) = ry(L(P,Q)) .

Proof: We leave this as a simple exercise for the reader. Note that for
sll x€X, apoint y is a Pareto improvement on x if y lies on

the perpendicular drawn from x to the line through P and Q.

‘“,
T T T T T R L R e **WHJ e |
—

;
!
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Examples: (1) 4f P and Q both lie in X, then E(P,Q) 1s L(P,Q) .

(0,1) |

P
RBQ o

(0,0) (1,0) .

£i4) if P and Q 1lie outside of X , then E(P,Q) may look like

the following (the bold line is E(P,Q) ): .
-—
P -
P X
(0,1), ' (0,1) L
R® Q 2
R .
(0,0) (1,0) (0,0) \ (1,0)
3
< 1 !
'4
In the examples (i) and (ii), the point R is the unique Nash equilibrium t
snd in both cases it is inefficient. : ;
’ |
Lemma 4.2: Let R be the Nash equilibrium of the game (P,Q) where
Pe=(a,b) and Q= (c,d) . Then X
(a) 1f R does not 1ie on the boundary of X (that is, if neither player ‘1

is on a vertex of his strategy set at R ), then R 4s efficient §

if snd only 4f a =c and/or b = d . The Nash equilibria of neardy

games are generically inefficient.
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(b) In the figure below, consider the three games (P,Q) , (P', Q') ,
and (P", Q") , with Nash equilibria R, R' , and R" respectively.

In these three cases, the Nash equilibriun is efficient and the Nash
equilibria of all nearby games remain efficient. In all three cases,
at least one player is at a vertex and in the game (P', Q') , the

efficient set is reduced to a point,

P Q P!
— |
: : '\ '
' : / /
E E c"' ."" Q' - !
: : o o"' =
: : ¢ ! v"'
[ . . Pt
| [ [] 2 !
(0 » 1 ) R R' ;
|
1
R" ........... e Qll
(0,0)

Proof: This is easy to check using Lemma 4.1.

This example illustrates the following main points of the general
theorenm:

(1) Nash equilibria are finite in number and vary continvously in u.

(2) The efficient set 18 contained in a union of submanifolds of codimension

at least 1 + N - n (equal to 1 in the above example).
(3) Efficient Nash equilibria at which no player is on a vertex of his 1

strategy set are not robust. ‘
(4) Robust exsmples of efficient Nash equilibria where at least one player
is on a vertex of his strategy set exist.

Note that the submanifold of functions U satisfies condition T.C., as ‘
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is easily checked, and hence the sbove results are consequences of Theorem
2.4. Also, the same game can be played in n-dimensions with n players

with similar results.

5. Varying Outcome Functions

Suppose now that utilities Ups ooy U, aTE defined on an outcome
space Y and that an outcome function ¢ : X = s1 X ., Xx Sn + Y {s given,
so that the jth player's payoff on a choice s = (s, cees s ) €X of
strategies is uj(o(';)) . In this section, we consider the question “to
vhat extent do the conclusions of Theorem 2.4 remain true in this setting?"
and try to give a qualitative answer. No attempt is made at covering a
"'general case" and we therefore make some technical assumptions to simplify
matters.

Assume that each strategy set sj is an open set in Rr(j) s Y
is an open subset of R" ,» and that the closures of the Sj and Y are

2

compact. Let U be the space of C*~-functions defiried on some fixed neigh-

borhood ¥ of Y . We also fix a neighborhood X of X in RN » Where

n
N= Jr(4), and let 2 be the set of smooth maps from X to Y ob-
i=

tained by restricting to X smooth maps from ¥ o Y.

The choice of amap ¢ € 2 and utilities u = (ul. S
defines a game. Let l!.(u) and B.(u) the subsets of X of Nash and

efficient points respectively.

e T AT
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Theorem 5.1: Assume that 24nsM € N and suppose that the following inequality

holds:

(») a=-1 ¢ %(N + M- \/(N-H)i + lm)

24

Then there is an open dense set no € 0 such that: for all ¢ € no ’

there is an open dense set U N € U such that

1) No('J) is finite for all u € UO .
(i) E,@ AN G =f forall VEU, .

Remarks: (i) Inequality (&) is satisfied if n-y< M - /N .

(i1) I1f M= N, inequality () becomespn-1< N - VN . For example, if

M= N >2 and each strategy set has dimension at least two, it is satisfied.

Proof: For fixed ¢ € Q@ , consider the map

D, : " x X + Mat(n,N)

i
((ul. censu?), X) & [g%] (an nxN matrix)

where the -3 are Cartesian coordinates on R“ +« Let E'
of Mat(n,N) of matrices with dependent rows and let N'

of matrices of the form

r(l) rx(2) r(n)

= J

be the subset

be the subset
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U, =u and -d-(A- (6(x))) = C . Hence we must see that if
(1] dt ut t=0

25

As in Section 2, if a point x € X 1lies in N‘(u) (resp. Eo(u) ) then
D(u,x) € N' (resp. E’' ). By Lemma 2.1, codim(N') = N and
codim(E' NAN') > N .

For x€ X, 1let “x be the derivative of ¢ at x, 1i.e.,

3¢
dox = [}Ti(x)] where o((xl, ...,xN)) = (ol(xl, ...,xN), ""‘H(xl' ...,xN)) .

3
For u € U™ and yEeEY, let A‘—;(y)- -g-;— (an n x M matrix). By

the chain rule:

D, (%) = A(6(x))do, .

Conclusions (1) and (i11) of Theorem 5.1 hold if the map Do(ﬁ.x) is trans-
verse to N' and E' N N' , as in Section 2. For fixed ¢ , the open

dense set U° c U satisfying (1) and (ii) exists 1f the map

D¢ : U™ x X - Mat(n,N)

is transverse. The first observation is that l)0 is transverse 1if the
rank of ddax is greater than or equal to n for all x € X . To prove
this, let B & Mat(n,N) . 1t suffices to show that for all x € X and

U €EU", there is a path Et € U" such that :o = U and:

d
[a—e“:t""‘)”

.d¢ - n -
t-O} x

It is clear that for all C € Mat(n,M) , there is a path ;"_t such that

B S T

unk(dox) 2> n, then there exists a C such that C-dox =B . This s 3

N, AT b i cn

obvious if we congsider B, C, and “x as linear maps and the equality

c'“x = B as the commutativity of the diagram

¥
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B
e |
a_ c
!84

I1f the dimension of the image of “x is at least n, then C can be
chosen so that C-dox =B

To prove the theorem, it remains only to find conditions on M,
N and n which guarantee the existence of an'open dense set 90 cq

such that for all ¢ € no R rank(d¢x) >n forall x€X.

Lemma 5.2: Let f(a) = -a2 + (N+M)a - N(M-1) . For all integers
0 <a<M, there is an open dense set 2® € Q@ such that for all ¢ € n‘ ,
{x € X: rank(d¢x) = a3} 41is a finite union of submanifolds of X of dimen- ‘

sion f(a) (if f(a) < 0, this is taken to mean that {x € X : rank(d¢x) = a}

is empty).

Before proving Lemma 5.2, we show that it implies Theorem 5.1. %a: :

‘.

90 = n 8% . Ve need only check that £(a) < 0 for a < n-l1 4f the inequaiity (*)
a<n-l1

of Theorem 5.1 is satisfied. Note that f(a) is increasing on the inter-

‘val [0,M] and the smallest zero of £(s) 1lies in that interval. In

fact, the smallest zero i{s equal to %((N+H) - \/(N-H)i + 4N’ and f£f(n-l)

is therefore negative if n satisfies (v).

Lemna 5.2 is also s consequence of the transversal density theorem.

Consider the map

4 : 0 x X~ Mat(M,N)

(¢,x) b do‘
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We have seen, in the proof of Lesma 2.1, that the set R, of a MxN
watrices of rank a8 (0 < 8 <M) 4s s finite union of closed submanifolds

of Mat(M,N) of dimension aN + (M-a)a . Furthermore, A s obviously

transverse and so there is an open dense set 0" © 0 such that A(¢,x)

is transverse to Ra for all ¢ € o* (openness follows since the defini-

tion of R implies that all ¢ € 0 are restrictions to X of maps defined

on a compact set containing X ). In particular, the codimension of

A(@)-I(Ra) is equal to the codimension of R, in Mat(M,N) . A short

14

calculation yields Lemma 5.2.

4
nea-empY
Corollary 5.3: If M >n, there is 8, open (though not necessarily dense)

set 2. 1in N such that the conclusion of Theorem 5.1 holds for asll

0
¢ € 2 -
Proof: This follows from the above proof and the remark that the set

and nen- empy
{6 € 0 : rank(dé,) >n for all x € X} is openydin 0.

What happens if N, M and n do not setisfy inequality (#) of
Theorem 5.1?7 Any one of the following conclusions may hold robustly, though
not generically, depending on the conditions placed on ¢ : (a) the con-

-clusion of Theorem 5.1, (b) all Nash equilibria are efficient (the case | -
Y= {pt.} ), (c) the efficient Nash equilibria sre a union of sudbmanifolds

of the Nash get of codimension at least one.
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